
Propose a Likelihood Ratio Test Statistic to detect the dynamic changes in Point 
Processes with Networked Interaction Dynamics:
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B. Changes From Hawkes to Hawkes

Next, consider the scenario where the process prior to a
change is a Hawkes process, and the change occurs in the influ-
ence parameter α or the influence matrix A.

1) One-Dimensional Case: Under the hypothesis of no
change, the event stream is a one-dimensional Hawkes pro-
cess with parameter α. Under the alternative hypothesis, there
exists a change point κ. The sequence is a Hawkes process with
intensity α, and after the change, the intensity changes to α∗.
Assume that the parameter α prior to the change is known.

Using the likelihood functions derived in Section II-B, we
obtain the log-likelihood ratio

ℓt,τ ,α∗ = logL(α∗,β, µ) − logL(µ)

=
∑

ti ∈(τ ,t)

log

[
µ + α∗∑

tj ∈(τ ,ti ) βe− β (ti − tj )

µ + α
∑

tj ∈(τ ,ti ) βe− β (ti − tj )

]

− (α∗ − α)
∑

ti ∈(τ ,t)

[
1− e− β (t− ti )

]
, (19)

and the change-point detection is achieved through a procedure
in the form of (16) by maximizing with respect to τ and α. Here,
recall from the original form of the data (1) that ti represents the
ith event’s occurrence time. Hence, (19) means that, to evaluate
the likelihood for a time window (τ, t), one should consider
all events that fall within that interval and use their occurrence
times.

2) Multi-Dimensional Case: For the multi-dimensional set-
ting, we assume that the change will alter the influence
parameters of the multi-dimensional Hawkes process over the
network. This captures the effect that, after the change, the influ-
ence between nodes becomes different. Assume that ,under the
hypothesis of no change, the event stream is a multi-dimensional
Hawkes process with parameter A. Alternatively, there exists a
change point κ. The sequence is a multi-dimensional Hawkes
process with influence matrix A before the change, and after
the change, the influence matrix becomes A∗. Assume that the
influence matrix A prior to the change is known.

Using the likelihood functions derived in Section II-B, the
log-likelihood ratio at time t for a hypothetical change-point
location τ and post-change parameter value A∗ is given by

ℓt,τ ,A∗ = logL(A∗,β, µ) − logL(µ)

=
∑

ti ∈(τ ,t)

log

[
µui +

∑
tj ∈(τ ,ti ) α∗

ui ,uj
βe− β (ti − tj )

µui +
∑

tj ∈(τ ,ti ) αui ,uj βe− β (ti − tj )

]

−
d∑

j=1

∑

ti ∈(τ ,t)

(
α∗

j,ui
− αj,ui

) [
1− e− β (t− ti )

]
, (20)

and the change-point detection is applied through a procedure
in the form of (18) by maximizing with respect to τ and A∗.
Here, recall from the original form of the data (1) that (ti , ui)
represents the ith event’s occurrence time and the node where the
event occurs. Hence, (17) means that, to evaluate the likelihood
for a time window (τ, t), one should consider all events that fall
within that interval and aggregate the intensities using the edges

Fig. 3. Illustration of the sliding window approach for online detection.

α∗
ui ,uj

(null influence parameter) or αui ,uj (alternative influence
parameter) across nodes that correspond to these events.

IV. ALGORITHM FOR COMPUTING LIKELIHOOD ONLINE

In the online setting, we obtain new data continuously. Hence,
to perform online detection, we need to update the likelihood
efficiently to incorporate the new data. To reduce the computa-
tional cost, update of the likelihood function can be computed
recursively, and the update algorithm should have a low cost. To
reduce memory requirements, the algorithm should only store
the minimum amount of data necessary for detection rather than
the complete history. These requirements make online detection
drastically different from offline detection because, in the offline
setting, we can afford greater computational complexity.

A. Sliding Window Procedure

The basic idea of the online detection procedure is illustrated
in Fig. 3. We adopt a sliding window approach to reduce the
computational complexity as well the memory requirements.
We update the detection statistic asynchronously every γ events,
i.e., when mod(i, γ) = 0, where i is the event index (in all our
examples in Sections VI and VII, we set γ = 1, i.e., update
the detection statistic upon every new event). When evaluat-
ing the likelihood function, instead of maximizing over ever
possible change-point location τ < t, we pick several possi-
ble change-point locations within a window size L and max-
imize the statistics over several values of τ , e.g., τ ∈ Ωt !
{t − ∆1, t − ∆2, . . . , t − ∆k}, where ∆i are the chosen off-
sets of possible change-point locations from the current time. In
this way, we reduce the computational complexity because we
eliminate the maximization over all possible change-point loca-
tions before time t. This also reduces the memory requirement,
as we only need to store events that fall into the sliding window.
The drawback is that, by doing this, some statistical detection
power is lost because we do not use the most likely change-point
location, and this may increase the detection delay.

When implementing the algorithm, we choose the Ωt to
achieve a good balance in these two aspect. We have to choose a
window length that is sufficiently large so that there are enough
events stored for us to make a consistent inference. In prac-
tice, a proper length of window relies on the nature of the data.
If the data are noisy, a longer time window is usually needed
to achieve a better estimation of the parameter and reduce the
false-alarm rate.

B. Parameter-Free EM-Like Algorithm

We consider a one-dimensional point process to illustrate the
derivation of the EM-like algorithm. It can be shown that the


